CASE REPORT

Multiple vertebral fractures in an elderly male with macroprolactinoma

Saša Magaš1, Miroslav Ćaćić2, Zrinka Sudar Magaš 3, Ivan Kruljac2

1 Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia
2 Department of Endocrinology, Diabetes and Metabolic diseases „Mladen Sekso”, University Hospital Center „Sestre milosrdnice” and University of Zagreb Medical school, Zagreb, Croatia
3 Department of Surgery, County hospital „Bjelovar”, Bjelovar, Croatia

Corresponding author:
Saša Magaš, Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia; Dugi dol 4A, 10000, Zagreb; Telephone: 00385989027453; e-mail: magas.sasa@gmail.com

DOI: 10.21040/eom/2016.2.3.7

Received: January 13th 2016
Accepted: July 21st 2016
Published: September 15th 2016

Abstract
Hyperprolactinemia is associated with increased bone loss both in men and women. We report a case of an elderly patient with multiple osteoporotic vertebral fractures due to long-lasting hypogonadism caused by prolactinoma. The patient was treated with transphenoidal surgery, small doses of dopamine agonists, teriparatide, calcium and vitamin D supplements. Treatment led to increase in bone mineral density and decrease in lumbar pain intensity. This case highlights that clinicians should bear in mind the fact that osteoporotic vertebral fractures in men may be linked with hypogonadism and hyperprolactinemia. These conditions can be effectively treated. Therefore, detailed medical history and appropriate endocrinological evaluation should be performed in all male patients with osteoporotic fractures.

Keywords: macroprolactinoma, hypogonadism, osteoporotic fractures, pituitary surgery, remission
1. Introduction

Prolactinomas represent are the most common functional pituitary adenomas [1]. The majority of patients with prolactinomas have hypogonadism due to prolactin's inhibitory effect on pulsatile gonadotropin secretion. Patients with larger tumors often have some degree of hypopituitarism due to the compression of the pituitary stalk or destruction of normal pituitary tissue. Both hypogonadism and growth hormone deficiency have numerous metabolic effects. For instance, they are associated with higher prevalence of metabolic syndrome, but also with the decrease in bone mineral density [2,3]. There are no guidelines on screening and treatment of osteoporosis in patients with prolactinomas. In this case study, the authors aim to present an elderly patient with multiple osteoporotic vertebral fractures due to long-lasting hypogonadism caused by prolactinoma.

2. Case presentation

A 71-year old patient presented with substantial worsening of lower back pain. The pain was exacerbated by physical activity and alleviated by analgesics and resting. Besides the chronic back pain over the 10-year period, his medical history was unremarkable. Physical examination disclosed severe thoraco-lumbar scoliosis with trunk rotation. The lumbar spine segment was distinctly painful on palpation, along with tense musculature. His body height was 160 cm and his body weight 69 kg. Plain radiogram confirmed thoraco-lumbar scoliosis, caused by multiple grade 3 vertebral fractures of the lumbar spine. Dual-energy X-ray absorbiometry (DXA) revealed severe osteoporosis of the lumbar spine and osteopenia of the hip (Table 1).

He was prescribed with thoraco-lumbar orthosis and referred to an endocrinologist, who had taken a

<table>
<thead>
<tr>
<th>Region</th>
<th>Area</th>
<th>BMC (g)</th>
<th>BMD (g/cm²)</th>
<th>Tscore</th>
<th>PR (%)</th>
<th>Zscore</th>
<th>AM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>6.17</td>
<td>2.86</td>
<td>0.464</td>
<td>-3.4</td>
<td>50</td>
<td>-2.2</td>
<td>60</td>
</tr>
<tr>
<td>Troch</td>
<td>11.88</td>
<td>5.15</td>
<td>0.434</td>
<td>-2.7</td>
<td>56</td>
<td>-2.3</td>
<td>60</td>
</tr>
<tr>
<td>Inter</td>
<td>21.80</td>
<td>20.00</td>
<td>0.918</td>
<td>-1.5</td>
<td>77</td>
<td>-0.9</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>39.84</td>
<td>28.02</td>
<td>0.703</td>
<td>-2.2</td>
<td>68</td>
<td>-1.5</td>
<td>75</td>
</tr>
<tr>
<td>Wards</td>
<td>1.13</td>
<td>0.23</td>
<td>0.204</td>
<td>-4.1</td>
<td>26</td>
<td>-2.2</td>
<td>40</td>
</tr>
<tr>
<td>Lumbar spine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>25.04</td>
<td>7.86</td>
<td>0.314</td>
<td>-6.3</td>
<td>31</td>
<td>-5.5</td>
<td>34</td>
</tr>
<tr>
<td>L2</td>
<td>19.95</td>
<td>8.83</td>
<td>0.443</td>
<td>-5.9</td>
<td>40</td>
<td>-5.0</td>
<td>45</td>
</tr>
<tr>
<td>L3</td>
<td>16.81</td>
<td>8.85</td>
<td>0.508</td>
<td>-5.4</td>
<td>46</td>
<td>-4.5</td>
<td>51</td>
</tr>
<tr>
<td>L4</td>
<td>14.45</td>
<td>6.96</td>
<td>0.472</td>
<td>-6.1</td>
<td>41</td>
<td>-5.2</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>76.55</td>
<td>32.19</td>
<td>0.421</td>
<td>-6.1</td>
<td>39</td>
<td>-5.2</td>
<td>42</td>
</tr>
</tbody>
</table>
more detailed medical history. The patient reported impotence and low libido back from his late forties. Laboratory examination showed normal serum and urinary calcium and phosphorus, normal total protein, serum creatinine, liver enzymes and alkaline phosphatase. Vitamin D and osteocalcin levels were decreased, while beta-cross laps were normal (0.12 μg/L). Thyroid hormone tests were normal as well as PTH (14.9 pg/ml, normal range 15-65). Morning cortisol, ACTH, DHEAS and urinary-free cortisol were all within normal limits. His IGF-I level was slightly decreased (101 ng/ml, normal range 115-420). Testosterone level of 5.6 nmol/L (normal range 6.7-25.7) and normal gonadotropin levels confirmed central hypogonadism. Additionally, marked hyperprolactinemia was noted (701 μg/L, normal range 2-20), which was the cause of central hypogonadism. Magnetic resonance confirmed a 21x18x16 mm large tumor mass of the sellar region. The diagnosis of prolactinoma has been made and purely endoscopic transsphenoidal pituitary surgery was performed.

Pathohistological analysis confirmed the diagnosis of prolactinoma. Prolactin decreased to 15 μg/L on seventh postoperative day, but finally increased to 88 μg/L three months after the surgery. Therefore, 2.5 mg of bromocriptin was initiated; prolactin levels have finally normalized and testosterone increased to 13 nmol/L. Daily teriparatide, vitamin D and calcium supplementation therapy were also initiated. His back pain diminished six months later. The patient was well and had no complaints during the follow up. Teriparatide and bromocriptine were discontinued two years later and MRI of the sellar region showed no signs of residual prolactinoma. DXA showed an increase in BMD; total

![Figure 1](image1.png)

Figure 1. Plain radiogram showing thoraco-lumbar scoliosis, caused by multiple grade 3 vertebral fractures of the lumbar spine (A). Magnetic resonance sagittal native T1-sequence showing 21x18x16 mm large pituitary adenoma with suprasellar extension and impingement of the suprasellar cistern (B).
by itself is not a risk factor for the development of osteoporosis [8].

Studies regarding the interaction between bone metabolism and prolactin in animal models showed conflicting results. Clément-Lacroix et al reported that osteoblasts, but not osteoclasts, express PRL receptors and that an effect of PRL on osteoblasts could be required for normal bone formation and maintenance of bone mass [9]. However, different study reported that prolactin does have effect both on osteoblasts and osteoclasts. The authors concluded that hyperprolactinemia could act directly on bone to stimulate bone turnover, with more influence on bone resorption than formation. PRL enhanced bone resorption in part by increasing RANKL and decreasing OPG expressions by osteoblasts [10].

These data suggest that hyperprolactinemia has a negative effect on bone metabolism; however it is unclear whether prolactin directly enhances bone loss or this is mediated by hypogonadism. Interestingly, there are no studies that analyzed the role of prolactin in screening for secondary osteoporosis. In conclusion, clinicians should bear in mind the fact that osteoporotic vertebral fractures in men are often linked with hypogonadism and hyperprolactinemia. These conditions can be effectively treated. Therefore, detailed medical history and appropriate endocrinological evaluations should be performed in all male patients with osteoporotic fractures.

Author contributions

SM and ZSM gave the idea for the article, were engaged initial patient’s work-up, reviewed the final version of the manuscript and gave their approval for publication. IK and MV were engaged in patients treatment and follow-up, critically revised the manuscript and gave final approval. MĆ wrote and drafted the manuscript and gave final approval.
References

